
 
 

 

Important Developments in the EEO Analysis Field:  
Practical Significance and Fisher Exact Tests 

 
 One of the benefits of supporting our clients in numerous Title VII cases and audits is 
that we stay current with new developments relevant to EEO analyses. Through these 
experiences, we learn of new techniques that should be adopted, as well as previously-applied 
techniques that should be modified or abandoned altogether. Two such developments have 
emerged over the last few years that have led our firm to make changes to the latest version of 
the Adverse Impact Toolkit (version 4.1) as well as our AutoAAP® program and related tools.  
 
 The first change we have made focuses on applying “practical significance” tests to 
adverse impact analyses. The second change deals with the Fisher Exact Test, which is a 
commonly-applied statistical analysis used when conducting the “Selection Rate Comparison” 
adverse impact analyses. Both changes are discussed in more detail below. 
 
Practical Significance 
 
 Since the publication of our book, Adverse Impact and Test Validation: A Practitioner’s 
Guide to Valid and Defensible Employment Testing, 2nd Ed. (2006), there are new cases that re-
interpret practical significance tests that had been applied in previous cases,1 as well as cases that 
take more narrow interpretations of practical significance that have been used by other courts2  
or that do not support practical significance evaluations3 at all. While the Uniform Guidelines o
Employee Selection Procedures (Guidelines) are clear that practical significance evaluations are 
conceptually relevant to adverse impact analyses, we suggest employers “tread carefully” when 
evaluating the practical significance of adverse impact analysis results in light of these “mixed” 
recent findings. We do not believe that hard-and-fast practical significance rules should be 
applied when analyzing adverse impact. 
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 In enforcement and litigation settings, we have found that the determination of adverse 
impact is a process whereby the “collective evidence” is weighed, starting with a finding of 
statistical significance that exceeds 2 standard deviations. If this first threshold is met, additional 
evaluations, such as the 80% test (or the “impact ratio”) and practical significance evaluations 
can be used to evaluate the sum of adverse impact evidence in the situation. This is because the 
true definition (per the Guidelines) of adverse impact is essentially a “substantially different rate 
of selection.” 
 

 
1 Delgado v. Ashcroft, No. Civ.A. 99-2311(JR), May 29, 2003. 
2 OFCCP v. TNT Crust (US DOL, Case No. 2004-OFC-3). 
3 Dixon v. Margolis (765 F.Supp. 454, N.D.Ill.,1991), Washington v. Electrical Joint Apprenticeship & Training 
Committee of Northern Indiana, 845 F.2d 710, 713 (7th Cir.), cert. denied, 488 U.S. 944, 109 S.Ct. 371, 102 
L.Ed.2d 360 (1988). Stagi v. National Railroad Passenger Corporation, No. 09-3512 (3d Cir. Aug. 16, 2010). 



 For example, in the most recent circuit-level case dealing with practical significance, the 
court stated: 
 

Similarly, this Court has never established “practical significance” as an 
independent requirement for a plaintiff’s prima facie disparate impact case, and 
we decline to do so here. The EEOC Guidelines themselves do not set out 
“practical” significance as an independent requirement, and we find that in a case 
in which the statistical significance of some set of results is clear, there is no need 
to probe for additional “practical” significance. Statistical significance is relevant 
because it allows a fact-finder to be confident that the relationship between some 
rule or policy and some set of disparate impact results was not the product of 
chance. This goes to the plaintiff’s burden of introducing statistical evidence that 
is “sufficiently substantial” to raise “an inference of causation.” Watson, 487 U.S. 
at 994-95. There is no additional requirement that the disparate impact caused be 
above some threshold level of practical significance.  Accordingly, the District 
Court erred in ruling “in the alternative” that the absence of practical significance 
was fatal to Plaintiffs’ case [Stagi v. National Railroad Passenger Corporation, 
No. 09-3512 (3d Cir. Aug. 16, 2010)]. 

 
For these reasons, we recommend that our clients rely primarily on statistical significance for 
determining adverse impact, and consider the 80% test and shortfall calculations (i.e., the 
number needed to eliminate a statistically significant finding) as two methods for sensibly 
evaluating practical significance. 
 
The Fisher Exact Test 
 
 Partially due to its name (“exact”), the Fisher Exact Test (“FET” hereafter) has long been 
used for analyzing adverse impact in selection and hiring decisions in the EEO field. The use of 
FETs in the Title VII enforcement settings (litigation and government audits) has typically been 
limited to situations where sample sizes are small (e.g., less than 30, or whenever one group’s 
passing numbers fall below 5), although it has often been calculated using a variety of 
approaches (one-tail significance and two-tail significance levels using a wide variety of 
methodologies) when evaluating 2X2 tables (where two groups are compared with respect to two 
outcomes—e.g., passing and failing). 
 
 While the FET has continued to be used in Title VII situations, the statistical and medical 
research fields have increasingly used alternative tests for 2X2 tables that more accurately 
address the statistical assumptions tied to the analysis, as well as increase statistical power to 
determine true differences between the two groups under study (e.g., Collins & Morris, 2008; 
Crans & Shuster, 2008; Lin & Yang, 2009). While several issues pertaining to the analysis of 
2X2 tables have been debated since Fisher originally proposed his test (in 1934), two issues have 
drawn attention in recent years: the conditional assumptions relevant to the FET and its 
conservative nature. Each is discussed in more detail below. 
 



Conditional Assumptions Relevant to the FET 
 
 The first issue deals with the conditional assumptions tied to the FET which are 
frequently not met in practice. There are three situations (or “models”) in which 2X2 tables can 
be evaluated (see Collins & Morris, 2008): 
 

Model 1: Independence Trial—The marginal proportions are assumed to be fixed in 
advance (i.e., proportion of each group and selection totals are fixed). The data are not 
viewed as a random sample from a larger population.  

 
Model 2: Comparative Trial—Either the row or column totals are fixed. The applicants 
are viewed as random samples from two distinct populations (e.g., minority and 
majority). The proportion from each population is fixed (i.e., the marginal proportion on 
one variable is assumed to be constant across replications). The second marginal 
proportion (e.g., the marginal proportion of applicants who pass the selection test) is 
estimated from the sample data. 

 
Model 3: Double Dichotomy—Neither row/column are assumed to be fixed. Applicants 
are viewed as a random sample from a population that is characterized by two 
dichotomous characteristics. No purposive sampling or assignment to groups is used, and 
the proportion in each group can vary across samples. 

 
These three models can be summarized as “fixed margins,” “mixed margins,” and “free 
margins.” The statistical field has more recently arrived at a consensus that the FET can only be 
accurately applied in the first model—the Independence Trial model (fixed margins). Because 
this model does not represent typical personnel selection data, “there is reason to question the 
appropriateness of the FET for adverse impact analysis” (Collins & Morris, 2008). The stringent 
requirements of the Independence Trial model requires that “both of the margins in a 2X2 table 
are fixed by construction—i.e., both the treatment and outcome margins are fixed a priori” 
(Sekhon, 2005). In other words, for the conditional assumptions of the Independence Trial model 
to be met, the investigator needs to call out, in advance, the marginal totals of both the rows and 
columns prior to conducting the experiment that will produce the numbers within each of the 
rows and columns. This requirement is only rarely met when conducting adverse impact 
analyses. As Gimpel (2007) states, “Over decades there has been a lively debate among 
statisticians on the applicability of the conditional FET. The argumentation against the test 
mainly is that it conditions inference on both margins where only one margin is fixed by most 
experimental designs and the test is inherently conservative…the row and column marginal totals 
are fixed by the researcher prior to data collection” (p. 171). 
 
 Even in promotional analyses, where sometimes the total number of promotions may in 
fact be declared in advance of the promotional process, the conditional assumptions of the FET 
may be violated because the justification of conditional tests (those for “fixed” margins) 
“depends on the assumption that the process determining the fixed marginal counts is not 
dependent on the process under study…” (Gastwirth, 1997). In other words, the number of 
minority members hired out of a labor pool should not provide information about the odds ratio 
of the promotion rates, the parameter of interest. Gastwirth advises checking this assumption 
before calculating conditional tests in situations where the available sample results from a 



previous selection process that may be affected by the same factors involved in the process being 
examined (because the odds ratio of the hiring rates and promotion rates would be related).  
 
 In layoff (RIF) situations, where it appears that the row and column totals may be fixed in 
advance, sometimes the decision making process is dynamic and continually flexible until the 
final decisions have been made, thus weakening the strict conditional assumptions tied to the 
FET. In addition, the numbers in the process do in fact depend on the employer’s previous 
selection and promotional practices.  
 
 When applying the three models above to typical adverse impact analyses (e.g., hiring, 
promotion, terminations, layoffs, etc.), it becomes clear that the conditional assumptions of the 
FET will only rarely be met. Furthermore, when the conditions are not met, the researcher is 
required to use either an unconditional test (such as Barnard’s Exact Unconditional Test adopted 
in StatXact or the Boschloo Exact Unconditional Test4 widely advocated in the statistical and 
medical fields) or a conditional test that adjusts for the conditional assumptions tied to the FET 
(e.g., the Lancaster mid-p, adopted in BCG’s tools).  
 
The Conservative Nature of the FET 
 
 The second issue with the FET pertains to its unnecessary conservative nature. This 
limitation occurs because the FET has “less power than conditional mid-p tests and 
unconditional tests” while these other tests “generally have higher power yet still preserve test 
size” (Lydersen, et. al, 2009). For this limitation alone, several statisticians have recommended 
that the “traditional FET should practically never be used” (Lydersen, et. al, 2009) because the 
“actual significance level (or size) being used is much less than the nominal level” (Lin & Yang, 
2009). Agresti (2007, p. 48) recommends using the mid-p adjustment even in situations where 
the fixed marginal assumptions can be met “because the actual error rates [of the FET] is smaller 
than the intended one” (p. 48). Agresti states: 
 

For small samples, the exact distribution has relatively few possible values. The 
P-value also has relatively few possible values … discreteness affects error rates. 
Suppose like many methodologists, you will reject the null hypothesis if the P-
value is less than or equal to 0.05. Because of the test’s discreteness, the actual 
probability of type I error may be much less than 0.05. The [Fisher Exact Test] is 
conservative because the actual error rate is smaller than the intended one. To 
diminish the conservativeness, we recommend using the mid-p value. (p. 48) 

 
Other categorical statistical books also recommend the mid-p as an effective way to meet the 
challenges offered by a discrete distribution when trying to apply a statistical test to correctly 
answer the .05 question (e.g., Simonoff, 2003; Rothman, 1986; Hirji, 2006).  
 
 While these issues have been percolating in the statistical journals for decades, the more 
recent application of Monte Carlo simulations conducted on the FET and similar tests now 
provide insight into just how conservative the FET can be, with estimates ranging between 50% 
below the desired .05 significance level (with small sample sizes around 50 or less) and 10-30% 

                                                      
4 See, for example, http://www.stat.ncsu.edu/exact/ 



under the .05 level (with larger sample sizes ranging between 75 and 200). The net effect of 
these limitations relevant to the FET is that it sets a 2.4 standard deviation threshold (in small 
samples of 50 and smaller), rather than the desired 2.0 threshold, and a 2.1 – 2.2 standard 
deviation threshold in larger samples between 75 and 200. This can result in practitioners 
thinking they are using a 2 standard deviation threshold test to analyze adverse impact, while the 
conservative nature of the FET has the net effect of actually setting the bar higher for finding 
adverse impact. 
 
Lancaster’s Mid-p as a Viable Solution 
 
 For the reasons discussed above, we join with several other statisticians (see short list of 
journal articles and textbooks) advocating Lancaster’s mid-p correction to the FET, which 
effectively corrects the FET to more accurately reflect the probability values of the adverse 
impact case analyzed in any one of the three models discussed above. While exact unconditional 
tests (like the widely-used Bernard or Boschloo Exact Unconditional Tests5) can be correctly 
used for mixed and free marginal situations, they were not tailored for fixed marginal situations. 
The mid-p, however, can be used for all three situations. While the mid-p is simply the FET with 
a statistical adjustment,6 outputs from the mid-p typically correlate exceptionally high (r >.98) 
with the outputs from most unconditional exact tests. 
  
 There are several reasons that the mid-p is a “best choice” option as explained by Hirji 
(2006, pp. 218-219). In the Section titled, Why the Mid-P?, Hirji provides the basis for endorsing 
the mid-p as the preferred exact method (for either conditional or unconditional situations). 
These are: 
 

1. Statisticians who hold very divergent views on statistical inference have either 
recommended or given justification for the mid-p method. 

2. A mid-p version has been or can be devised for most of the statistics used in exact 
conditional and unconditional analysis of discrete data. 

3. Mid-p versions for multi-parameter discrete data tests have also been devised. 
4. The evidence function of the TST (twice the smaller tail) mid-p method is a continuous 

bimonotonic function (a function that, starting from a value at a central point, decreases 
evenly in either direction), giving a coherent set of p-values and nested, connected 
confidence intervals. 

5. The shape and power function of the TST mid-p tests is generally close to the shape of 
the ideal power function. (This is an important distinction because it demonstrates that 
the power of the test is uniform, able to detect adverse impact when it exists across a 
variety of data sets—both balanced and unbalanced). 

6. In a wide variety of designs and models, the mid-p rectifies the extreme conservativeness 
of the traditional exact conditional method without compromising the type I error in a 
serious manner. 

7. The expected value of the one-sided mid-p is equal to .5. The TST mid-p has an empirical 
distribution that is close to the uniform (0, 1) distribution with expected values of around 
0.5. 

                                                      
5 See, for example, http://www.stat.ncsu.edu/exact/. 
6 The mid-p is simply calculated by first computing the natural FET then subtracting the hypergeometric probability 
value of the first observed set from the total cumulative probability from both tails. 



8. Empirical studies show that the performance of the mid-p method resembles that of the 
exact unconditional methods and the conditional randomized methods. 

9. With the exception of a few studies, most studies indicate that, in comparison with a wide 
variety of exact and asymptotic methods, the mid-p methods are among the preferred, if 
not the preferred ones. 

10. The median unbiased estimate, derived from the TST mid-p evidence function, has good 
comparative small and large sample properties. 

11. The progress in computing power and efficient algorithms has made computation of exact 
distributions, and thus the mid-p based indices, a practically feasible option for an 
extensive array of complex discrete models and designs. 

 
Hirji concludes by stating: “The mid-p method is thus a widely-accepted, conceptually sound, 
practical and among the better of the tools of data analysis. Especially for sparse and not that 
large a sample size discrete data, we thereby echo the words of Cohen and Yang (1994) that it is 
among the ‘sensible tools for the applied statistician.’”  
 
 We are pleased to continue our research in these (and other related) areas of EEO 
analyses, and welcome feedback from other practitioners who can offer insights on the same. 
 
 Please feel free to contact us at (800) 999-0438 or staff@biddle.com for additional 
information on either of these matters. 
 
Sincerely, 

 
Dan A. Biddle, Ph.D.  
CEO, Biddle Consulting Group, Inc. 
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